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for Cray XT Systems 

Wayne Joubert, Oak Ridge National Laboratory 

ABSTRACT: In late 2009 NICS will upgrade its 8352 socket Cray XT5 from Barcelona 

(4 cores/socket) processors to Istanbul (6 cores/socket) processors, taking it from a 615 

TF machine to nearly 1 PF.  To balance the machine and keep 1 GB of memory per core, 

NICS is interested in reconfiguring the XT5 from its current mix of 8- and 16-GB nodes 

to a uniform 12 GB/node.  This talk examines alternative memory configurations for 

attaining this, such as balancing the DIMM count between sockets of a node vs. 

unbalanced configurations.  Results of experiments with these configurations are 

presented, and conclusions are discussed.  
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1. Introduction 

Recent trends in microprocessor design have led to 
non-power-of-two core counts for processor dies, due to 
layout and power consumption issues.  Examples include 
AMD Istanbul (6 cores) and Intel Dunnington (6 cores). 

 
The use of irregular core counts for multicore 

processors brings complications to implementing memory 
configurations for these chips.  DIMM memory bank 
configurations may have restrictions on the size and 
number of DIMMs allowed in each bank—restrictions 

which do not fit well with processors having irregular core 
counts. 
 

In 2009 the National Institute for Computational 

Sciences intends to upgrade its Kraken Cray XT5 system 
from AMD Barcelona processors (4 cores/socket) to 
AMD Istanbul processors (6 cores/socket). 

 
The purpose of this study is to evaluate memory 

configurations for the new system which will maintain at 

least 1 GB of memory per processor core, a requirement 
for targeted applications, and also will provide good 

memory subsystem performance, within the allowable 
hardware requirements of memory unit configurations. 

2. The Cray XT5 Compute Node 

Each Cray compute blade consists of four compute 
nodes.  In turn each compute node is composed of two 
processor sockets, each with its own memory.  In 
particular, each socket is associated with four DDR-2 
DIMM memory slots, arranged into two banks of two 
DIMM slots each.  Each processor’s Northbridge memory 
controller accesses the socket’s DIMMs directly.  
Furthermore, each processor can access the other socket’s 
DIMMs in a NUMA fashion through a HyperTransport 
link.  See Figure 1. 

 
Restrictions exist on how each CPU socket’s four 

memory slots may be populated.  In particular, the two 

slots of each bank must either both be empty or both be 

populated with DIMMS of the same memory capacity.  
Other configurations are not officially supported. 

 

Processor sockets are populated with AMD Opteron 
processors.  For this study, the primary processor is the 
AMD Barcelona quadcore CPU with 2.3 GHz clock 

speed, 4x64 KB L1 data cache, 4x512 KB L2 cache and 2 
MB shared L3 cache.  Memory modules considered 

include DDR2-800 4 GB DIMMs, DDR2-667 2 GB 
DIMMs and DDR2-533 8 GB DIMMs. 
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Experiments are performed on the Oak Ridge 

National Laboratory “Chester” platform, a Cray XT5 test 

and development system with 448 compute cores, with the 

same hardware and software configuration as the ORNL 

NCCS JaguarPF Cray XT5 platform. 
 

 

Figure 1.  Cray XT5 Node Memory Architecture. 
 

3. Design of Experiments 

 
For these experiments, nodes of the Chester platform 

are reconfigured with the desired memory layout, and 
benchmarks are run on the reconfigured nodes.  Table 1 
shows the set of memory configurations considered.  The 
notation “A-B-C-D, E-F-G-H” is used to represent the 
memory capacities, in GB, of the eight DIMM modules on 
the node, where “A-B-C-D” are the slots for the first 
socket, “A-B” are the slots for the first bank of the first 
socket, and so forth. 

 

Configuration Description 

4-4-0-0,  4-4-0-0 2    GB/core,      balanced 

4-4-0-0,  2-2-0-0 1.5 GB/core,  unbalanced 

2-2-2-2,  2-2-0-0 1.5 GB/core,  unbalanced 

2-2-2-0,  2-2-2-0 1.5 GB/core,      balanced 

4-4-2-2,  4-4-2-2 3    GB/core,      balanced 

8-8-0-0,  8-8-0-0 4    GB/core,      balanced 

Table 1.  Experimental Memory Configurations 

 
This table indicates the average memory per core for 

the quadcore Barcelona processor.  For the six-core 

Istanbul upgrade, the memory per core will be reduced 
correspondingly, leaving at least 1 GB per core in each 

case. 
 

For each configuration, the following questions are to 
be addressed: 

 

• What is the effective memory bandwidth and 

latency? 

• Particularly for unbalanced configurations, 

how much performance penalty is there for 
accessing off-socket memory? 

 

The latter question is of particular significance for 

large-memory applications that are memory bandwidth 

limited.  A typical use case is for the application to 

allocate equal amounts of memory for each processor 

core.  For large-memory cases under this regime on 

unbalanced configurations, this necessitates overflowing 

on-socket memory and accessing off-socket memory.  It is 

desirable to understand what performance penalty may 

result from this. 

 

To test memory performance, the following codes are 
considered: 

 

• The STREAM benchmark.  In particular, the 
triad operation z = y + a x from this 
benchmark  is used. 

• A DAXPY kernel y = y + a x. 

• The LMBENCH benchmark, to measure 
memory latency. 

• The S3D application code.  This is a 
petascale combustion application based on 
3-D structured grids which typically has 
memory-bound performance. 

 

4. Experiments: Memory Spillage Effects 

 
This battery of experiments uses a Chester node with 

a standard 4-4-0-0, 4-4-0-0 or 8-8-0-0, 8-8-0-0 balanced 
memory configuration to understand the impact of 
executing a code on one compute socket and letting 

memory allocations spill to the other socket’s memory.  
This is done by gradually increasing the problem size until 

all node memory is used.  See Figure 2. 
 

Figure 3 shows results for the STREAM triad 
benchmark, executed on 1 to 8 compute cores, using the 
4-4-0-0, 4-4-0-0 memory configuration.  Here the peak 

node memory bandwidth is 25.6 GB/sec theoretical, 21.2 
GB/sec actual.  One can clearly see a drop in memory 

bandwidth performance for very long vectors that span 
across all of node memory, a drop of up to 15%. 

 
It should be noted that for this system, memory pages 

are assigned based on a Linux first-touch policy, and the 

structure of STREAM array initialization puts array 
elements z(i), x(i) and y(i) all on the same page (and thus 



 

 

CUG 2009 Proceedings 3 of 6 

 

the same socket) for a given value of i.  Thus at any given 

time, a core is accessing  either all on-socket or all off-

socket memory. 

 

 

Figure 2.  Off-Socket Memory Reference. 
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 Figure 3.  STREAM Triad Performance. 

 
Figure 4 gives results for the same experiment except 

that array initialization is changed from interleaved to 
sequential, so that all of array z is touched, then all of y, 
then all of x.  Thus for given i, each of z(i), x(i) and y(i) 

are on different memory pages and, potentially, on 
different sockets’ memory.  The results show that for off-
socket memory references, in some cases there is an 

uptick in memory bandwidth performance.  This is due to 

one processor concurrently accessing both on-socket 
memory through its memory controller and off-socket 
memory through HyperTransport.  In some situations this 

technique could be used to boost memory performance for 
an application.  However, it is not helpful for the common 

use case in which all cores of the node are accessing 

memory at the same time. 
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Figure 4.  STREAM Triad Performance. 
 
 
Figure 5 shows similar results for a DAXPY kernel 

with sequential array initialization.  The performance 
shows a similar uptick in performance as on- and off-
socket memory is accessed concurrently by a single 
processor. 
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Figure 5.  DAXPY Performance. 

 
Figure 6 shows performance of the S3D application 

for the 4-4-0-0, 4-4-0-0 (DDR2-800) and the 8-8-0-0, 8-8-
0-0 (DDR2-667) configurations.  S3D is executed either 
on 1 socket (4 MPI tasks) or 2 sockets (8 MPI tasks), and 

the gridcell count per core is gradually increased.  The 
wallclock time per gridcell per core is graphed.  The 
circled area indicates run cases for which off-socket 

memory is used.  One can see a slight increase in runtime 

for these cases, though the amount of increase is small.  It 
should be noted that for these cases, S3D spends about 
half of its time in memory references, thus it is 

significantly memory intensive. 
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Figure 6.  S3D Performance. 

 

5. Memory Configuration Experiments:  S3D 

 
In this section we consider the impact of different 

memory configurations on S3D performance, for runs 
using all 8 cores of a compute node.  For the baseline 
case, we take the 4-4-0-0, 4-4-0-0 balanced configuration.  
The time per gridcell for this case is expected to be flat—
see Figure 7. 
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Figure 7.  Baseline S3D Performance. 

 
Figure 8 shows S3D performance for the unbalanced 

4-4-0-0, 2-2-0-0 configuration.  The performance is 
slightly worse overall than the baseline case.  However, 

the run case for which off-socket memory is used is only 
slightly worse than the case of using all on-socket 
memory.  Thus the impact of unbalanced memory on 

performance is small. 
 
Figure 9 shows S3D performance for the unbalanced 

2-2-2-2, 2-2-0-0 configuration.  The performance is 6% 

slower than the baseline case overall and 17% slower 
when off-socket memory is used.  It is unclear whether the 
overall slightly slower performance is primarily due to 

differences in the DIMMs or due to the processor’s 
memory controller behavior. 
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Figure 8.  S3D Performance, 4-4-0-0, 2-2-0-0. 
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Figure 9.  S3D Performance, 2-2-2-2, 2-2-0-0. 
 
Figure 10 shows S3D performance for the balanced 

2-2-2-0, 2-2-2-0 configuration.  It should be noted that 
this configuration is unsupported, since some DIMM 
banks are only half-filled.  Performance for this case is 
considerably worse, up to 39% slower.  The likely 
explanation of this behavior is that the memory controller 
performs striping of allocated memory across the two 
DIMMs of the memory bank; thus, performance of the 
bank is cut in half for a half-populated bank. 

 

0

50

100

150

200

250

u
S

e
c 

p
e

r 
ce

ll
 p

e
r 

co
re

Cells per core

S3D Normalized Performance, 8 Cores

Chester 4/4/0/0, 4/4/0/0

Chester 2/2/2/0, 2/2/2/0

39% slower

 

Figure 10.  S3D Performance, 2-2-2-0, 2-2-2-0. 
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Figure 11 shows S3D performance for the balanced 

4-4-2-2, 4-4-2-2 configuration.  Performance is very 

slightly worse than but almost identical to the baseline 

case. 
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 Figure 11.  S3D Performance, 4-4-2-2, 4-4-2-2. 

 

6. Memory Configuration Experiments: 

LMBENCH 

 
The LMBENCH benchmark measures array load 

latency as a function of array length.  For these 
experiments, the benchmark is run on a single core, and 
the array size is increased to span all of node memory. 

 
Figure 12 shows performance for the baseline case of 

4-4-0-0, 4-4-0-0.  One can clearly see the effects of L1/2/3 
cache as well as the increase in latency as the array 
accesses spill off-socket. 
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Figure 12.  LMBENCH Performance, Baseline Case. 
 

Figure 13 shows LMBENCH performance for several 
memory configurations.  For the unbalanced case, the 
experiment is run alternatively from each CPU socket on 

the node, to show differences in performance between the 

two sockets due to the memory asymmetry.  Notably, the 

performance for all cases is nearly identical.  Differences 

for very long vector lengths are due to the fact that for the 

different cases, the sockets have different amounts of 

memory, so memory spillage begins to occur at different 
vector lengths.  For detail of this behavior, see Figure 14, 

where the points of spillage for each case are shown.  The 

on-socket latency for all cases is 85 ns, and the 

extrapolated off-socket latency for all cases is in the range 

of 102-108 ns. 
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Figure 13.  LMBENCH Performance. 
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Figure 14.  LMBENCH Performance, Detail. 

 

7. Conclusions 

 

The conclusions from these experiments are as 
follows: 

 

• The impact of referencing off-socket 

memory for unbalanced memory 
configurations is less than expected, less 

than 20% for the example application used. 

• The unsupported memory configuration 
performs very poorly due to incompatibility 

with the memory controller’s striping policy. 
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• Different memory configurations have very 

little effect on memory latency. 

• In some rare cases an application might 

benefit from using on- and off-socket 

memory concurrently, though for the typical 
application use case this is of  no benefit. 

 

These results argue in favor of the viability of 

unbalanced memory configurations.  For applications for 

which the balance of memory is important, the impact of 

the memory not being balanced is relatively small.  

Furthermore, for applications that do not push the limit of 

node memory for their use cases, or for applications that 

are not memory-intensive, use of off-socket memory does 

not affect application performance to an appreciable 

degree. 
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